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A B S T R A C T   

Environmental variable functions are of key importance for gross primary productivity (GPP) modeling. This 
study proposes a method about the optimization of environmental variable function to obtain a more robust and 
accurate GPP quantitative model. The key idea is to explore the impact of environmental factors on the accuracy 
of the GPP quantitative model from the following three aspects: the first is using tensor as the alternative 
environmental factor equation to construct the basis-function set of photosynthetically active radiation (PAR), 
atmospheric temperature and atmospheric carbon dioxide concentration for the given environmental conditions, 
and soil moisture functions of new environmental conditions. The second is building 144 candidate model based 
on a tensor product. The third is finding the best model from the candidates according to the Shuffled Complex 
Evolution (SCE-UA) algorithm and the Minimum Loss Screening Method. Through the above experiments, we 
have the following conclusions: First, this paper obtains two new best models from 144 candidate models, and 
their accuracy is higher than that of the initial model, indicating that this paper proposes a more robust and 
accurate GPP quantitative model. Then, the model proposed in this paper has common characteristics, that is, 
PAR and atmospheric temperature can be replaced by more appropriate quantitative functions, named Sigmoid- 
like function and Q10 equation, and the carbon dioxide equation can use half-saturated equation or Sigmoid 
function. Finally, the method in this paper can provide new ideas for simulating the fluxes of other ecosystems, 
including soil carbon decomposition and plant respiration.   

1. Introduction 

Terrestrial gross primary productivity (GPP) is the total photosyn
thetic uptake or carbon assimilation by plant and is a key component in 
terrestrial carbon cycle (Schaefer et al., 2012). The carbon absorption by 
vegetation depends on climate variability, historical climate distur
bance, the utilization of water and nutrient, soil type, species compo
sition and community structure. GPP is a measure of the carbon intake 
by vegetation, normal observed by eddy covariance flux tower. If the 
simulated GPP is too low or too high, then the predicted crop yield, leaf 
area index, wood biomass, and soil biomass may also be inaccurate 
(Schaefer et al., 2008). Therefore, improving the accuracy of GPP 

simulation is an urgent problem to be solved in the fields of terrestrial 
ecosystems, ecological environment, and agriculture. 

Since the large-area GPP estimation is limited by the spatial and 
temporal location of the flux tower, many scholars have developed GPP 
quantitative models for long-term estimation of regional and global 
GPP. The GPP quantitative model is divided into process model (PM), 
enzyme kinetics (EK) model and light utilization efficiency (LUE) model 
(Schaefer et al., 2012). The PM model simulates the carbon cycle process 
of the entire life cycle of the vegetation, uses the statistical relationship 
between the observed environmental conditions and the GPP eddy 
covariance flux data, and then uses various reanalysis weather products 
to extend it to the regional or global scale (Beer et al., 2010). The EK 
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model quantifies GPP through stomatal water loss under enzyme ki
netics and stomatal conductance balance on the leaf scale (Collatz et al., 
1991; Collatz et al., 1992). Most of these stomatal conductance models 
are based on the empirical correlation between conductance, photo
synthesis, and relative humidity (Ball et al., 1987) or insufficient vapor 
pressure (VPD) (Wang et al., 1998). The LUE model uses photosyn
thetically active radiation (PAR), the remote-sensing PAR fraction 
absorbed by vegetation (fPAR), and biomass conversion factors 
(commonly referred to as light utilization efficiency) to estimate GPP 
(Field et al., 1995; Goetz et al., 1999; Landsberg and Waring, 1997; 
Monteith, 1972; Prince and Goward, 1995; Running et al., 2000; 
Running et al., 2004; Heinsch et al., 2003). Schaefer et al. (2012) believe 
that there is a difference between the GPP estimated by these three 
models and the GPP observed in the field. Through experiments, they 
found that among the EK models, the three best-performing models are 
DLEM (Tian et al., 2010), SIB (Baker et al., 2008) and ISOLSM (Riley 
et al., 2002), and RMSE is about 2.0 umol C m− 2 s− 1. However, the 
worst-performing model is CNCLASS (Arain et al., 2006), with an esti
mated RMSE of 4.5 umol C m− 2 s− 1. When the estimation scale of the EK 
model is set to the monthly or annual scale, the error will be magnified 
to a greater extent. The error of LUE model in GPP estimation is higher 
than that of EK model. The RMSE of the two best-performing models 
ISAM (Yang et al., 2009) and MODIS_5.1 (Heinsch et al., 2003) in GPP 
estimation is about 2.5 umol C m− 2 s− 1, while the RMSE of the worst- 
performing model DNDC (Li et al., 2010) can even reach more than 
5.5 umol C m− 2 s− 1. On average, these two models overestimate GPP in 
winter, spring, and autumn, and underestimate it in summer. 

Any errors in the simulation of GPP by the above two models will be 
propagated in other models, thereby introducing errors in simulating 
other biomass and fluxes. Since PM models tend to be part of large-scale 
ecosystem models, such as CESM model (Hurrell et al., 2013), CLM 
model (Bonan et al., 2002), and TEM model (McGuire et al., 1992; Raich 
et al., 1991). The error in the GPP estimation is easily brought into the 
net ecosystem exchange (NEE) and the total ecosystem respiration 
(Schaefer et al., 2012), so the propagation of GPP error is more pro
nounced in the PM. Therefore, this study focuses on minimizing the 
error of PM through optimizing the environment variable functions. 

PM modeling method belongs to mechanism modeling method in 
process modeling (Beer et al., 2010). According to the mechanism pro
cess of the ecosystem, reasonable assumptions are put forward for the 
equations in the model, and then the rationality of the model is evalu
ated through speculation, deduction, statistical analysis and verification 
(Hoyle, 1995). In the process of modeling, assumptions are put forward 
mainly based on personal experience. Therefore, the environmental 
variable equation of PM is usually obtained through trial and error based 
on experience and experimental data (Beer et al., 2010; Sun et al., 2017). 
However, this trial-and-error method usually takes a lot of time to verify 
the hypothesis step by step, which is inefficient, and the results often 
have great uncertainties. 

As an example, Terrestrial Ecosystem Model (TEM) is a process- 
based biogeochemical model, which has been widely used to quantify 
GPP (Hayes et al., 2014; McGuire et al., 1992; Raich and Schlesinger, 
1992; Zhuang et al., 2001; Zhuang et al., 2002; Zhuang et al., 2010; 
Zhuang et al., 2011; Zhuang et al., 2013). GPP is originally defined as a 
function of the irradiance of PAR, atmospheric CO2 concentrations, 
moisture availability, air average temperature, the relative photosyn
thetic capacity of the vegetation and nitrogen availability (Raich and 
Schlesinger, 1992). Zhuang et al. (2002) has found through hypothesis, 
derivation and verification that the ratio of vegetation canopy leaf 
biomass to the maximum canopy leaf biomass is also an important factor 
in quantifying GPP. Subsequently, Zhuang et al. (2011) has found that 
adding the freeze-thaw index of the following month can better quantify 
the influence of the freeze-thaw dynamics on GPP. The case shows that a 
reasonable model optimization is necessary, at meanwhile, manual 
check of the model is not efficient enough. In addition, due to the mutual 
constraints of various environmental conditions, the functions expressed 

by various environmental variables are likely to have the best combi
nation when quantifying GPP. This indicates that the environmental 
variable equations of other processes in the ecosystem model can be 
used as a reference for the equations of the same environmental vari
ables in the GPP model, thereby providing a possibility to improve or 
develop a new GPP model. 

In recent years, the growth in computing power of multi-core pro
cessors has made high-efficient and automatic physical discovery 
possible (Zhang and Lin, 2018). This makes it possible for researchers to 
develop new GPP models with the help of high performance computing. 
The matrixization of models and the introduction of tensor calculations 
can solve the problem of establishing a high-dimensional matrixed 
candidate model set under high performance computing. Therefore, this 
paper applied high performance computing and machine learning in 
building large-scale GPP candidate model set and model optimizing. 

With the help of high performance computing cluster, this paper 
proposed a method to automatically optimize GPP quantitative model 
using flux data and various environmental data. First, a basis function 
set is established to collect a large number of environmental curve 
functions that may affect GPP quantification, namely, environmental 
variable functions. Then, tensor product is used for the basis-function set 
to obtain 144 candidate models, and optimize the parameters of all 
candidate models based on the SCE-UA algorithm (Kan et al., 2016). 
After obtaining the optimal parameters of all candidate models, by 
setting thresholds, using the Minimum Loss Screening Method, candi
date models that perform well in training and testing are screened. 
Finally, through cross-validation experiments, the model with high 
stability is obtained and regarded as the best model. 

2. Material and methods 

2.1. Study area and materials 

Harvard Forest is located on the outskirts of Boston, Massachusetts, 
USA, it is one of the oldest forest-atmosphere carbon exchange study 
areas in North America. This paper selects the EMS vortex flux tower of 
Harvard Forest (longitude: − 72.171478, latitude: +42.537755, altitude: 
340 m), which was installed in 1989 and its eddy current measurement 
results constitute the longest record of net ecosystem exchange (NEE) in 
North American forest. Based on the long-term records of NEE, the long- 
term effects of climate disturbances on carbon flux can be further 
determined. Climate, soil moisture, and vegetation data are also used to 
assess the monthly GPP of deciduous broad-leaved forests (Munger and 
Wofsy, 1999). This tower has also been used to compare a variety of GPP 
quantitative models (Wu et al., 2010), and the schematic diagram of the 
study area is shown in Fig. 1. 

In the study area, we obtain the PAR (unit: μmol m− 2 s− 1) at a height 
of 28 m above the ground from the EMS vortex flux tower, and add the 
data to a monthly scale value (unit: μmol m− 2 month− 1), the monthly 
average atmospheric temperature of the plant canopy is also obtained at 
a height of 27.9 m above the ground (unit: ◦C). In addition, the atmo
spheric carbon dioxide concentration data (unit: ppm) is obtained at 29 
m off the ground, and the default value of carbon dioxide data is filled 
with the global measurement data observed by the US NOAA (htt 
ps://www.esrl.noaa.gov/gmd/ccgg/trends/), and finally data accumu
lated into monthly average carbon dioxide. In this paper, through the 
EMS tower, the net radiation of vegetation canopy, daily minimum 
temperature, daily maximum temperature, hourly average temperature, 
air relative humidity, daily sunshine hours, wind speed of canopy, as 
well as longitude, latitude and altitude data of the station are summa
rized. Then the average monthly evapotranspiration EET (unit: mm) is 
calculated by Penman equation (Allen et al., 1998). Because it is 
impossible to obtain continuous soil moisture content data from the EMS 
tower, this paper uses the soil moisture data of Barre Woods soil 
warming experiment in Harvard Forest, which is the relative soil 
moisture value measured by the No. 6 TDR probe in the experimental 
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control area at a depth of 50 cm from the ground. Finally, we summa
rized the GPP observations per second measured by the EMS tower to the 
monthly scale. Under the 3*3 grid window around the EMS tower, the 8- 
day GPP measured by the MOD17A2H algorithm in the MODIS Terra 
and MODIS Aqua satellites are summarized to the monthly scale. 

2.2. Initial GPP model 

The Terrestrial Ecosystem Model (TEM) (Hayes et al., 2014; McGuire 
et al., 1992; Raich and Schlesinger, 1992; Zhuang et al., 2001; Zhuang 
et al., 2002; Zhuang et al., 2010; Zhuang et al., 2011; Zhuang et al., 
2013) has been widely used to quantify GPP. As a biogeochemical 
model, this model is also widely used in the study of terrestrial ecosys
tems in China (Hao, 2015; Li et al., 2016). In this model, GPP was first 
defined in detail as the model of PAR, atmospheric carbon dioxide (CO2) 
concentration, water availability, average temperature, relative photo
synthetic capacity of vegetation and nitrogen availability (Raich and 
Schlesinger, 1992). In this paper, the latest GPP quantization method of 
TEM is adopted: 

GPP = Cmax*f (PAR)*f (P)*f (F)*f (T)*f (C)*f (NA) (1) 

Where Cmax represents the maximum monthly carbon uptake by 
vegetation under ideal conditions (McGuire et al., 1992), f(PAR) is the 
influence equation of PAR on vegetation carbon absorption (McGuire 
et al., 1992; Raich and Schlesinger, 1992). f(P) represents the monthly 
leaf area relative to the leaf area during the maximum leaf area month 
and depends on the estimated monthly evapotranspiration (Raich et al., 
1991). f(F) is a scalar function ranging from 0.0 to 1.0, representing the 
ratio of canopy leaf biomass to the maximum leaf biomass (Zhuang 
et al., 2002). f(T) represents the influence equation of monthly mean 
atmospheric temperature on vegetation carbon absorption (Zhuang 
et al., 2004). f(C) represents the effect of elevated atmospheric CO2 
concentration on the absorption of CO2 by plant canopy cells (McGuire 
et al., 1997; Pan et al., 1998). NA is nitrogen availability, and f(NA) 
simulates the limiting effect of plant nitrogen status on vegetation car
bon uptake (Pan et al., 1998). All functions are as follows: 

f (PAR) =
PAR

ki + PAR
(2) 

Where ki is the irradiance parameter at half of the maximum carbon 
absorption rate. 

f (P) = KLEAFj (3)  

KLEAFj = a*
(
EETj
EETmax

)

+ b*
(
KLEAFj− 1

)
+ c (4)  

KLEAFj = 1.0 if KLEAFj > 1.0 (5)  

KLEAFj =
KLEAFt
KLEAFmax

if KLEAFmax < 1.0 (6)  

KLEAFj = min if KLEAFj < min (7) 

Where KLEAFj indicates the relative change of the light conversion 
capacity of mature vegetation based on the estimated evapotranspira
tion (EET) and the light conversion capacity of the previous month. The 
time step j represents the month. EETj is the largest EET generated in any 
month during the historical period. The a, b and c are regression pa
rameters. The min represents a preset minimum value of KLEAF, and 
KLEAFmax is the maximum KLEAF in the historical period. 

f (F) =
1.0

1.0 + m1*em2*
̅̅̅̅̅̅̅̅
f (Cv)

√ , f (Cv) =
m3*Cv

1.0 + m4*Cv
(8) 

Where m1, m2, m3, and m4 are the parameters of f(F) similar to the 
Sigmoid function. f(Cv) is the hyperbolic function of the state variable 
for vegetation carbon (Cv). 

f (T) =
(T − Tmin)*(T − Tmax)

[(T − Tmin)*(T − Tmax) ] −
(
T − Topt

)2 (9) 

Where T represents the monthly average temperature of the vege
tation canopy, Tmin, Tmax and Topt represents the minimum, maximum 
and optimal temperature at which the vegetation absorbs carbon. 

f (C) =
Ci

kc+ Ci
(10)  

Ci = Ca*Gv (11)  

Gv = 0.10+
(

0.9*
EET
PET

)

(12) 

Where kc is the parameter at half of the maximum rate of carbon 
absorption. Ci is the CO2 concentration in the leaf. Ca is the concentra
tion of CO2 in the atmosphere. Gv is a unitless multiplier, which explains 
the change in the electrical conductivity of the leaf to CO2 due to the 
change in water using efficiency. EET is the actual evapotranspiration 
and PET is the potential evapotranspiration. Here it is assumed that 
actual evapotranspiration is equal to potential evapotranspiration. 

f (NA) = 1 (13) 

In this paper, it is assumed that the availability of vegetation nitro
gen fully satisfies the carbon uptake by vegetation. 

2.3. Constructing GPP candidate models with different environment 
variable functions 

In this paper, the required candidate models are increase by con
structing the basis-function set. The advantage of this method is that it 
can carry out a wide range of automated trial-and-error experiments. 
Even if there are unreasonable basis-functions, it can be eliminated by 
the Minimum Loss Screening Method, and at least the initial model after 
global parameter optimization can be obtained. The construction of the 
basis-function set mainly includes three steps: one is to construct the 
existing environmental variable basis-function set; the other is to 
construct a new environmental variable basis-function set; the third is to 
construct a candidate model set through the tensor product. 

Fig. 1. Study area, where the left shows the geographical location (longitude: 
− 72.171478, latitude: +42.537755) of EMS vortex flux tower, and the right is 
the real picture. 
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2.3.1. Building a basis-function set of existing environment conditions 
This paper assumes that in the GPP model, the existing environ

mental variable functions are not the best, and there are some envi
ronmental variable functions that can better fit the relationship between 
environmental variables and vegetation carbon uptake. The formula 
constructed is as follows: 

F(x) = [f (x) f1(x) f2(x)……fn(x) ]T (14) 

Where x is an environment variable that already exists in the initial 
model. The more rational the base functions are created in the set, the 
more likely it is to find environmental variable functions suitable for 
quantifying GPP. 

When constructing the basis-function set of PAR. Firstly, it is 
assumed that the solar radiation intensity is optimal when the photo
synthetic efficiency of vegetation is the highest, and the decrease or 
increase of the solar radiation intensity on this basis will inhibit the 
photosynthesis of vegetation to some extent. According to this 
assumption, the basis-function is constructed as shown in f1(PAR). Then, 
we continue to assume that when the amount of PAR is too low or too 
high, its change will have a smaller impact on vegetation photosynthesis 
than when the amount of radiation is appropriate. Sigmoid function is a 
common S-shaped function in biology (Han and Moraga, 1995), which 
can perform data smoothing, compression and normalization. The slow 
monotone increasing characteristic of this function has been verified to 
have a high similarity with the change of ecological environment 
mechanism (Zhuang et al., 2002). So we can try to use the Sigmoid 
function as the basis-function of PAR, as shown in f2(PAR). Therefore, 
we can construct the basis function set of PAR: F(PAR) = [f(PAR) f1(PAR) 
f2(PAR)]T. 

f1(PAR) =
(PAR − PARmin)*(PAR − PARmax)

[(PAR − PARmin)*(PAR − PARmax) ] −
(
PAR − PARopt

)2 (15)  

f2(PAR) =
1.0

1.0 + p1*ep2*
̅̅̅̅̅̅
f (p)

√ , f (p) =
p3*PAR

1.0 + p4*PAR
(16) 

Where PAR represents the photosynthetically active radiation in the 
vegetation canopy, PARmin and PARmax represent the lowest and the 
highest of photosynthetic radiation required for the vegetation to absorb 
carbon respectively, and PARopt represents the optimal photosyntheti
cally effective radiation. 

When constructing the basis-function set for the atmospheric tem
perature. First of all, it can be expressed by f1(T). Then, when the tem
perature is too low or too high, the effect of its change on vegetation 
photosynthesis is less than that at the appropriate temperature, so we try 
to use the Sigmoid-like function as the basis of T, as shown in f2(T). In 
addition, we also try to use the half-saturated function as the basis- 
function of T, as shown in formula f3(T). Therefore, we can construct 
the basis-function set of T: F(T) = [f(T) f1(T) f2(T) f3(T)]T. 

f1(T) = Q10
T(canopy)− Tr

10 (17)  

f2(T) =
1.0

1.0 + t1*et2*
̅̅̅̅̅
f (t)

√ , f (t) =
t3*T

1.0 + t4*T
(18)  

f3(T) =
T

kt + T
(19) 

Where Q10 (Walter and Heimann, 2000; Zhuang et al., 2004) is 
similar to formula (9) and is the sensitivity of ecosystem respiration to 
temperature, that is, the multiple of the increase in respiration rate for 
every 10 ◦C increase in temperature. T(canopy) represents the temper
ature of the vegetation canopy, Tr is the parameter of Q10. 

Similar to PAR and T, we can try the following function f1(C) and 
f2(C) as the basis-function of CO2. Therefore, we can construct the basis- 
function set of CO2: F(C) = [f(C) f1(C) f2(C)]T. 

f1(C) =
1.0

1.0 + c1*ec2*
̅̅̅̅̅̅
f (c)

√ , f (c) =
c3*CO2

1.0 + c4*CO2
(20)  

f2(C) =
(CO2 − CO2min)*(CO2 − CO2max)

[(CO2 − CO2min)*(CO2 − CO2max) ] − (CO2 − CO2opt)2 (21)  

2.3.2. Building a basis-function set of new environment conditions 
The search for new models can be derived from known physical laws 

or based on empirical observations of physical behaviour (Zhang and 
Lin, 2019). In the previous section, only the existing environmental 
conditions were considered. Therefore, next we try to explore new 
environmental variables to find a more suitable quantitative model. The 
formula is as follows: 

F(y) = [1 f (y) f1(y) f2(y)……fn(y) ]T (22) 

Where y is the new environment variable. Here, vector 1 needs to be 
added to the basis function set to preserve the original state of the model. 
Therefore, each set of basic functions used for new environment vari
ables contains at least two elements. This paper uses this method to 
construct a new set of functions. 

The f(C) in formula (10) indicates that the leaf conductivity can 
represent the limit of CO2 absorption of water (McGuire et al., 1992; 
Raich et al., 1991; Wang et al., 2018). However, the direct influence of 
water on GPP has not been reflected in formula (1), so we establish the 
function of the influence of soil moisture on vegetation carbon absorp
tion to better represent this phenomenon. We assume that the effect of 
soil moisture on GPP is similar to the effect of soil moisture on decom
position of soil organic carbon (Tian et al., 1999) and methane oxidation 
(Zhuang et al., 2004), and then the basis function f(SM) of soil moisture 
is obtained. In addition, try half-saturated function and Sigmoid-like 
function to getf1(SM) and f2(SM). Finally, this study constructs the 
basis-function set of SM: F(SM) = [1 f(SM) f1(SM) f2(SM)]T. 

f (SM) =
(SM − SMmin)*(SM − SMmax)

[(SM − SMmin)*(SM − SMmax) ] − (SM − SMopt)2 (23)  

f1(SM) =
SM

ks+ SM
(24)  

f2(SM) =
1.0

1.0 + m1*em2*
̅̅̅̅̅̅
f (S)

√ , f (S) =
m3*SM

1.0 + m4*SM
(25) 

Where SMmin, SMmax and SMopt are the minimum, maximum and 
optimal soil moisture for carbon absorption by vegetation. 

2.3.3. Building all GPP model candidates 
All candidate GPP models are constructed by tensor product in this 

paper, as shown in Formula (26) and (27): 

D = F(PAR) ⊗ F(T) ⊗ F(CO2) ⊗ F(SM) ⊗ F(R)T (26)  

F(R) = Cmax*[f (P) ] ⊗ [f (F) ] ⊗ [f (NA) ] (27) 

We use H to represent the number of functions in the basis-function 
set, and use M to represent the number of candidate models. Then, the 
number of candidate models of GPP can be obtained is represented by 
formula (28): 

M = HPAR*HT*HCO2 *HSM*HR (28) 

According to 2.3.1 and 2.3.2, it can be found that the number of 
functions of the five basis function sets PAR, T, CO2, SM and R are 3, 4, 3, 
4 and 1 respectively, so the number of candidate models constituted is 
144. 

2.4. Optimizing environment variable functions 

Screening optimal environment variable functions from many can
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didates often requires multiple assessment criteria. Machine learning 
divides datasets into training and testing sets in modeling and knowl
edge discovery (Liu et al., 2016a, 2016b, 2017). Here, the Minimum Loss 
Screening Method is used to judge the performance of each candidate by 
observing and comparing the training and testing loss value. The can
didates with good performance based on the loss thresholds are then 
identified. The loss function of the minimization is: 

loss =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
GPPobs,i − GPPcandidate,i

)2

√
√
√
√ (29) 

Where GPPobs, i and GPPcandidate, i are the observations and simula
tions from every GPP candidate model. In the loss function, N is the 
number of data pairs for comparison. So, loss is one kind of root mean 
square error (RMSE). The steps of the Minimum Loss Screening Method 
are as follows: 

Step 0. Initialize. Select j = 0, O = {}, U = {}. Input all candidates D, 
initial values of all parameters C for each candidate, training the loss 
threshold Lt and testing the loss threshold Le, where D = {Di, i = 1, …, S}, 
C = {Ci, i = 1, …, S}, S represents the number of candidates, Di repre
sents the i-th candidate, and Ci represents the set of initial values of all 
the parameters of the i-th candidate. 

Step 1. Model training. j++, select Dj and Cj, then update Cj with 
SCE-UA until satisfying termination condition. 

Step 2. Model primary screening. Run Dj with Cj from Step 1. Check 
the loss value after model running. If the loss value < Lt, next; otherwise, 
return to Step 1. 

Step 3. Model secondary screening. Test Dj with Cj. Check the loss 
value after testing. If the loss value < Le, add Dj into the O and add Cj into 
the U, then next; otherwise, return to Step 1. 

Step 4. Update O and U. If j < S, return to Step 1; otherwise, output O 
and U. 

Dividing the dataset into different proportions of the training and 
evaluation sets can prevent overfitting in the experiment; it can also be 
used for observing the method’s generalization ability for new datasets 
(Kohavi, 1995; Liu and Cocea, 2017). Therefore, different training and 
test data proportion sets are used for each experiment, the results of each 
experiment are then summarized. The optimal state is that some can
didates appear simultaneously in each group of experimental results, 
indicating that these candidates have high stability and will not change 
with the change of dataset. We take the intersection of the sets of all the 
experimental results as the final GPP quantification models: 

Final = O1 ∩ O2 ∩ … ∩ OI (30) 

Where Oi represents the result of i-th experiment. I is the total 
number of experiments. 

When no candidates appear simultaneously in each set of experi
mental results, the size of thresholds Lt and Le should be constantly 
adjusted to obtain good candidates. If Lt is much higher, you cannot rule 
out candidates for poor performance in training; if Le is too low, you tend 
to ignore candidates that have very good predictive performance. 

3. Results 

According to 2.3.3, 144 candidates are built for GPP models. We 
conducted a total of four experiments. In the first experiment, we split 
the dataset into a training set and an evaluation set by 90.9% (from 2004 
to 2013) and 9.1% (in 2014), respectively. In the second experiment, we 
used 81.8% (from 2004 to 2012) of the data as the training set and 
18.2% (from 2013 to 2014) as the evaluation set. In the third experi
ment, 72.7% (from 2004 to 2011) of the data is used for training and 
27.3% for evaluation (from 2012 to 2014). In the fourth experiment, we 
split the data into 63.6% for training (from 2004 to 2010) and 36.4% for 
evaluation (from 2011 to 2014). Table 1 shows the performance of the 
initial model in the four experimental groups. 

3.1. Parameter optimization results of GPP model 

According to Minimum Loss Screening Method in section 2.4, we 
adjusted the thresholds Lt and Le to obtain the six candidates with the 
smallest evaluation RMSE value from 144 candidates. Table 2 shows the 
6 candidate models selected in each experiment. As we can see in this 
table, the loss value during training is often greater than that of the 
evaluation. This difference is caused by over-fitting due to the 
complexity of the data, or to the existence of multiple optimal local 
solutions in the process of parameter optimization. But the error caused 
by this phenomenon can be reduced by optimizing the global parameters 
of each candidate several times. Finally, after multiple optimizations, 
each parameter value falls within a specific interval, and this paper uses 
the interval average value as the final parameter value to reduce the 
impact of the local optimal solution. Through several experiments, it is 
found that some models appear stably in each result, so it further ex
plains that the four cross-validation experiments performed in this 
article are necessary. 

Based on the results in Table 2, we can see that most of the selected 
candidates (22 times selected) are centered between the Model-109 and 
Model-144 ranges. Only two candidates (Model-7 and Model-35) are not 
in this range. One common feature of the candidates in this range is that 
the temperature equation is replaced by the Q10 equation. This indicates 
that the carbon absorption capacity of vegetation increases with the 
increase of temperature, and the Q10 equation can better fit the rela
tionship between temperature and carbon absorption of vegetation than 
the hyperbolic equation. Another common feature is that among the 22 
selected candidate models, the PAR equation of 15 models is a Sigmoid- 
like function. It shows that with the increase of light capacity, the carbon 
absorption capacity of vegetation also increases. However, when the 
amount of light radiation is too low or too high, the effect of its change 

Table 1 
Training and evaluation performance list of the initial GPP model.  

Experiments Training set/test set 
(%) 

RMSE for 
training 

RMSE for 
evaluation 

1 90.9 / 9.1 42.08 27.96 
2 81.8 / 18.2 37.04 30.32 
3 72.7 / 27.3 42.2 29.2 
4 63.6 / 36.4 42.02 30.66  

Table 2 
Results of four experiments using the Minimum Loss Screening Method.    

Candidates Training RMSE Evaluation RMSE 

Experiment 1 Lt = 39 
Le = 23 

Model-115 35.89 22.96 
Model-133 38.46 21.79 
Model-137 37.19 22.81 
Model-139 37.23 22.52 
Model-140 37.99 21.48 
Model-141 37.46 22.55 

Experiment 2 Lt = 37 
Le = 28 

Model-119 35.5 26.23 
Model-133 36.9 24.4 
Model-136 36.45 27.21 
Model-137 36.98 24.33 
Model-140 37.54 22.5 
Model-142 35.21 25.18 

Experiment 3 
Lt = 41 
Le = 26 

Model-133 39.55 24.99 
Model-137 38.68 24.97 
Model-140 38.19 24.41 
Model-141 38.56 24.62 
Model-112 40.11 22.97 
Model-138 36.27 25.65 

Experiment 4 
Lt = 41 
Le = 26 

Model-7 38.7 25.47 
Model-35 40.42 25.42 
Model-133 39.24 25.31 
Model-137 40.52 22.83 
Model-139 37.67 25.62 
Model-143 37.79 24.75  
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on the photosynthesis of vegetation is less than that of the appropriate 
amount of light radiation. Therefore, the Sigmoid-like function can 
better fit the relationship between photosynthetic radiation and vege
tation carbon absorption. 

Fig. 2-1 shows scatter plots of the training results among the initial 
model and the six better candidates in four experiments. Except for 
Model-140 in experiment 2, the loss values of the other selected candi
dates in four training experiments are all lower than the initial training 
model. Then, Fig. 2-2 shows scatter plots of the evaluation capacity 
among the initial model and the six better candidates in the four ex
periments. In the four experiments, the loss values of the selected can
didates in the evaluation are all lower than those in the initial model. 
According to the trend line, except for experiment 1, we also found that 

these candidates are closer to the observations than the initial model. 
This illustrates that the Minimum Loss Screening Method can help find 
candidates with a better evaluation than the initial model. 

3.2. Optimized environment variable function 

In each experiment, this paper uses different proportions of training 
and test set data. According to 3.1, it is found that both Model-133 and 
Model-137 appear in the results of the four cross-validation experi
ments, then we compared these two candidates and the performance of 
the initial model in the four experiments. We found that Model-133 and 
Model-137 have a high stability. As shown in Fig. 3-1, in the four ex
periments, the loss values of Model-133 and Model-137 are smaller than 

Fig. 2. 2-1. Scatter plot of training results between the six candidate models selected by four experiments and the initial model (units: g C m− 2 month− 1). 
2-2. Scatter plot of evaluation results between the six candidate models selected by four experiments and the initial model (units: g C m− 2 month− 1). 
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the that of the initial model in the training experiments. As shown in 
Fig. 3-2, the Model-133 and Model-137 loss values are smaller than the 
initial Model in the evaluation experiments. Therefore, there is a higher 
accuracy and stability in Model-133 and Model-137 than the initial 
model during training and test, and they can be used as the best model 
for GPP quantification. Table 3 (units: g C m− 2 month− 1) shows the 
formulas for the two best candidate models (Model-133 and Model-137). 
It can be found that the PAR function of these two new models is 
replaced by Sigmoid-like function, and the temperature function is 
replaced by Q10. In addition, the CO2 function of Model-137 is replaced 
by the Sigmoid-like function, while other functions remain unchanged. 

When the optimal model is output, the calibration of global param
eters is completed simultaneously. Global parameters include not only 
the parameters of the GPP quantitative model, but also other parameters 
of the forest ecosystem model. In the process of vegetation carbon ab
sorption, part of the carbon source is consumed as autotrophic respira
tion of vegetation, such as maintenance respiration and growth 
respiration of vegetation. Another part of the carbon source falls in the 
form of fallen leaves and twigs during the growth of vegetation. The 
parameters of the best models (Model-133 and Model-137) obtained 
through global parameter optimization of all candidate models are 
shown in Table 4 and Table 5. The parameters of the two new models 
can be used directly in the Harvard Forest. 

3.3. Sensitivity analysis 

Sensitivity analysis is used to measure the contribution of each ob
ject, factors or changes of parameters to the results (Saltelli et al., 2000). 

For complex models, sensitivity analysis is conducive to mining the in
fluence of some key parameters on the model (Collins and Avissar, 
1994). Since a new model is proposed in this paper, it is necessary to 
conduct sensitivity analysis on environmental variables and global pa
rameters, so as to find out which environmental variables in the new 
model have a key impact on the carbon absorption of vegetation. 

The degree of influence in the environmental variables for Model- 
133 and Model-137 on the GPP estimate is shown in Table 6. We can 
see that for the Model-133, the estimated value remains unchanged as 
the PAR increases or decreases by 10%. When EET and T increase by 
10% and 5 ◦C, respectively, the estimated value of GPP also remains 
unchanged. However, when EET decreases by 10%, the estimated value 
decreases by 5.8%. With T decreases by 5 ◦C, the estimated value de
creases from 413.12 g C m− 2 month− 1 to 353.30 g C m− 2 month− 1, a 
decrease of 14.48%, which has the greatest impact on the accuracy of 
estimating GPP. When CO2 increases or decreases by 10%, the estimated 
value also increases and decreases by 3.74% and 4.22%, respectively. 
Therefore, when using Model-133, it is necessary to improve the positive 
errors of monthly average temperature, evapotranspiration and CO2 
concentration, among which the influence of monthly average temper
ature is the most obvious. 

For Model-137, the estimates remain the same when CO2 is increased 
or decreased by 10%. When PAR is increased or decreased by 10%, the 
estimated change is only 0.01%, with little effect. When EET increases or 
decreases by 10%, the estimated value also increases and decreases by 
7.24%. However, when T decreases by 5 ◦C, the estimated value de
creases from 413.12 g C m− 2 month− 1 to 356.91 g C m− 2 month− 1, 
decreasing by 13.77%, which has the greatest impact on the accuracy of 

Fig. 3. 3-1. Scatter plot of training results of the initial model and the new models (Model-133 and Model-137) in four experiments (units: g C m− 2 month− 1). 
3-2. Scatter plot of evaluation results of the initial model and the new models (Model-133 and Model-137) in four experiments (units: g C m− 2 month− 1). 
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estimating GPP. Therefore, when using Model-137, it is necessary to 
improve the measurement accuracy of monthly average temperature 
and evapotranspiration to reduce the influence of measurement errors 
on the estimation results. In summary, the two models are most sensitive 
to changes in air temperature, followed by evapotranspiration. 

The influence of global parameters of Model-133 and Model-137 on 
GPP estimation is shown in Fig. 4. We can find that when the parameter 
Cmax increases or decreases by 10%, the result of model estimation also 
increase or decrease, and it has the greatest impact on the accuracy of 
estimating GPP. For Model-133, the parameters a and b in formula (4), 
kc in formula (10), and m1 in formula (8) all affect the estimation result, 
and in descending order of influence is a > kc > b > m1. For Model-137, 
parameter a in formula (4), parameters p1, p2, p3, p4 in formula (16), 
parameters m1, m2, m3, m4 in formula (8), and parameters c2, c3 and c4 
in formula (20) all affect the estimation results. In summary, the two 
new models have the highest sensitivity to the parameter Cmax. 
Therefore, in order to reduce the impact on the estimation accuracy of 
GPP, it is necessary to perform multiple parameter optimizations on 
Cmax to find the global optimal solution. 

4. Discussions 

Aiming at the problem of GPP modeling, this study proposes a 
method to develop a new GPP model. The result shows that this method 
is feasible in the Harvard Forest. And it shall be also applicable for 
learning algorithms for modeling other ecosystem fluxes including soil 
carbon decomposition and plant respiration. In addition, our method 
can be easily used to find other important factors for ecological process 
modeling, like spatial texture information (Guo et al., 2020; Hoyle, 
1995). As long as the formula containing the new factors is added to the 
candidate, our model can automatically calculate whether the new 
factors can be introduced to improve the estimation accuracy. 

The advantage of this study is that as long as flux data is available, 
the method can be applied to any region to find the optimal model. 
Therefore, our method is not only applicable to the Harvard Forest de
ciduous broad-leaved forest ecosystem, but also applicable to other 
vegetation types, such as temperate grasslands, polar tundra, temperate 
mixed forests, tropical evergreen forests, etc. The best GPP quantitative 
model may be different with different regions’ flux data. In conclusion, 
our developed method can be used for model selection and optimization 
when observational data are available for any terrestrial ecosystems. 
The method can also be extended to study other processes for terrestrial 
ecosystems at regional scales. 

4.1. Comparison of the new model with other models in the Harvard 
Forest 

We summarize the GPP quantification experiments conducted in the 
Harvard Forest area, Table 7 shows the comparison of the new models 
with other models related to Harvard Forest flux data. According to 
Fig. 3-2, the maximum RMSE of our new models is reduced to below 

Fig. 3. (continued). 

Table 3 
Model equation for the optimal GPP quantitative model(Model-133 and Model- 
137).  

Candidates Model equation 

Model-133 GPP = Cmax * f2(PAR) * f(P) * f(F) * f1(T) * f(C) * f(NA) 
Model-137 GPP = Cmax * f2(PAR) * f(P) * f(F) * f1(T) * f1(C) * f(NA)  

L. Zhang et al.                                                                                                                                                                                                                                   



Ecological Informatics 66 (2021) 101479

9

25.50 g C m− 2 month− 1 when estimated from 2011 to 2014. Chen et al. 
(2011) used SAT-TEM and TEM models to simulate the Harvard Forest 
GPP from 2002 to 2006, and the RMSE is 45.62 g C m− 2 month− 1 and 
58.63 g C m− 2 month− 1, respectively. Schaefer et al. (2012) used 23 EK 
and LUE models to simulate the Harvard Forest comprehensive GPP 
value from 1991 to 2006, with RMSE of about 80.35 g C m− 2 month− 1. 
Yebra et al. (2015) estimated GPP using 891 days between 2000 and 
2011 in Harvard Forest with satellite-derived light-use efficiency and 
canopy conductance, they first used Cross-site optimization with a RMSE 

Table 4 
Global parameters for Model-133.  

Parameters Value Units Description Reference 

Cmax 832.3987 g m− 2 

month− 1 
Monthly maximum 
rate of Photosynthesis 
C 

(Raich 
et al., 
1991) 

Q10 4.270871  Ecosystem specific Q10 
coefficient indicating 
the air temperature 
dependency of 
photosynthesis 

(Zhuang 
et al., 
2004) 

Tr 17.42568 ◦C Ecosystem-specific 
reference air 
temperature used in 
the Q10 function for 
simulating the effects 
of air temperature on 
photosynthesis 

(Zhuang 
et al., 
2004) 

a 0.7809454  Regression-derived 
parameter for 
phenological processes 

(Raich 
et al., 
1991) 

b 0.2857267  Regression-derived 
parameter for 
phenological processes 

(Raich 
et al., 
1991) 

c 0.0596473  Regression-derived 
parameter for 
phenological processes 

(Raich 
et al., 
1991) 

Min 0.03691715  Parameter for 
phenological processes 

(Raich 
et al., 
1991) 

m1 0.2328779  Parameter for canopy 
leaf biomass equation 

(Zhuang 
et al., 
2002) 

m2 − 0.2258299  Parameter for canopy 
leaf biomass equation 

(Zhuang 
et al., 
2002) 

m3 0.119329  Parameter for logistic 
function of Cv 

(Zhuang 
et al., 
2002) 

m4 0.53885  Parameter for logistic 
function of Cv 

(Zhuang 
et al., 
2002) 

Cv0 17,516.97 g m− 2 Initial C in vegetation 
(in 2004) 

(Zhuang 
et al., 
2002) 

Kr 0.0003903169 g g− 1 

month− 1 
Plant respiration rate* 
at 0 ◦C 

(Raich 
et al., 
1991) 

KFALL 0.0001907366 g g− 1 

month− 1 
Proportion of Cv lost as 
Lc monthly 

(Raich 
et al., 
1991) 

P1 2.39273  Parameter for canopy 
photosynthetically 
active radiation 
equation  

P2 − 3.220593  Parameter for canopy 
photosynthetically 
active radiation 
equation  

P3 7.67201  Parameter for logistic 
function of f(radiation)  

P4 2.180516  Parameter for logistic 
function of f(radiation)  

KC 251.7685 μL/L Half-saturation 
constant for CO2-C 
uptake by plants 

(Raich 
et al., 
1991)  

Table 5 
Global parameters for Model-137.  

Parameters Value Units Description Reference 

Cmax 710.6023 
g m− 2 

month− 1 
Monthly maximum rate 
of Photosynthesis C 

(Raich 
et al., 
1991) 

Q10 4.926471  

Ecosystem specific Q10 
coefficient indicating 
the air temperature 
dependency of 
photosynthesis 

(Zhuang 
et al., 
2004) 

Tr 17.27769 ◦C 

Ecosystem-specific 
reference air 
temperature used in the 
Q10 function for 
simulating the effects of 
air temperature on 
photosynthesis 

(Zhuang 
et al., 
2004) 

a 0.7202978  
Regression-derived 
parameter for 
phenological processes 

(Raich 
et al., 
1991) 

b 0.1733052  
Regression-derived 
parameter for 
phenological processes 

(Raich 
et al., 
1991) 

c 0.1007003  
Regression-derived 
parameter for 
phenological processes 

(Raich 
et al., 
1991) 

Min 0.04930058  
Parameter for 
phenological processes 

(Raich 
et al., 
1991) 

m1 0.3365532  Parameter for canopy 
leaf biomass equation 

(Zhuang 
et al., 
2002) 

m2 − 0.5732397  
Parameter for canopy 
leaf biomass equation 

(Zhuang 
et al., 
2002) 

m3 0.7387806  Parameter for logistic 
function of Cv 

(Zhuang 
et al., 
2002) 

m4 0.6666389  
Parameter for logistic 
function of Cv 

(Zhuang 
et al., 
2002) 

CV0 16,407.54 g m− 2 Initial C in vegetation 
(in 2004) 

(Zhuang 
et al., 
2002) 

Kr 0.000306816 g g− 1 

month− 1 
Plant respiration rate* 
at 0 ◦C 

(Raich 
et al., 
1991) 

KFALL 0.00053412 
g g− 1 

month− 1 
Proportion of Cv lost as 
Lc monthly 

(Raich 
et al., 
1991) 

p1 1.415015  

Parameter for canopy 
photosynthetically 
active radiation 
equation  

p2 − 2.186898  

Parameter for canopy 
photosynthetically 
active radiation 
equation  

p3 3.335645  
Parameter for logistic 
function of f(radiation)  

p4 6.177337  
Parameter for logistic 
function of f(radiation)  

c1 8.900292  
Parameter for canopy 
moisture limitation on 
CO2 assimilation  

c2 − 6.000216  
Parameter for canopy 
moisture limitation on 
CO2 assimilation  

c3 16.49978  
Parameter for logistic 
function of Gv  

c4 16.40041  Parameter for logistic 
function of Gv   
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of74.57 g C m− 2 month− 1, then used per-site optimization with a RMSE 
of73.60 g C m− 2 month− 1. Wu et al. (2010) combined remote sensing 
and climate data to develop three GPP assessment models to assess GPP 
in the Harvard Forest from 2003 to 2006, and the RMSE of MOD GPP 
is71.55 g C m− 2 month− 1, then VPM’s RMSE decreased to 22.44 g C m− 2 

month− 1, TGM’s RMSE decreased to22.60 g C m− 2 month− 1, and VIM’s 
RMSE decreased to22.58 g C m− 2 month− 1. 

When comparing the accuracy of each model through the RMSE, we 
can see from Chen et al. (2011) study that our model has been improved. 
Moreover, our model’s R2 is higher than that of other models or 
methods. 

4.2. Comparison of the new model with the MODIS quantitative model 

MODIS GPP is widely used in the Harvard Forest region (Heinsch 
et al., 2006; Wu et al., 2010; Xiao et al., 2010; Yebra et al., 2015) as a 
method for quantifying GPP as a Light Utilization Efficiency Model 
(LUE) (Schaefer et al., 2012). This model used PAR multiplied by the 

remote sensing PAR portion (fPAR) of vegetation absorption and the 
biomass conversion factor (commonly referred to as light utilization 
efficiency) to estimate GPP (Field et al., 1995; Goetz et al., 1999; 
Heinsch et al., 2003; Landsberg and Waring, 1997; Monteith, 1972; 
Prince and Goward, 1995; Running et al., 2000, 2004). MODIS GPP’s 
algorithm (MOD17 algorithm) is effectively adjusted by eddy flux ob
servations (Running et al., 2004; Zhao et al., 2005). Eddy flux obser
vations can be used as a benchmark for evaluating both MODIS GPP and 
our new models. We first selected GPP data covering the EMS towers 
(latitude: +42.537755, longitude: − 72.171478) from the Aqua and 
Terra satellite products. The 8-day temporal resolution data under a 1 
km × 1 km grid cell are aggregated into the monthly GPP from 2004 to 
2014. As shown in Fig. 5, compared with EMS eddy flux observation of 
GPP, from 2004 to 2014, the GPP estimation RMSEs for MODIS-Aqua 
and MODIS-Terra are 73.0 g C m− 2 month− 1 and 74.8 g C m− 2 

month− 1, respectively, while the GPP estimation RMSEs for the two new 
models are 34.8 g C m− 2 month− 1 and 34.9 g C m− 2 month− 1, 
respectively. 

Table 6 
Sensitivity analysis of Model-133 and Model-137 to the changes in EET, PAR, T and CO2.    

Baseline EET EET PAR PAR T T CO2 CO2   

10% − 10% 10% − 10% +5 ◦C − 5 ◦C 10% − 10% 

Model-133 
Consumption 

413.12 413.12 389.17 413.12 413.12 413.12 353.3 428.56 395.7 
(units:g C m− 2 month− 1) 
Change (%) 0 0 − 5.8 0 0 0 − 14.48 3.74 − 4.22 

Model-137 
Consumption 413.92 443.9 383.95 413.95 413.89 413.92 356.91 413.92 413.92 
(units:g C m− 2 month− 1) 
Change (%) 0 7.24 − 7.24 0.01 − 0.01 0 − 13.77 0 0  

Fig. 4. Histogram are shown for the global sensitivity test of model parameters. (a) When other parameters remain unchanged, the estimated value changes of the 
Model-133 when each parameter is successively increased by 10% and decreased by 10%. (b) When other parameters remain unchanged, the estimated value changes 
of the Model-137 when each parameter is successively increased by 10% and decreased by 10%. 
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Therefore, the accuracy of GPP estimated by the two new models is 
more than double that of MODIS GPP. As can be seen from Fig. 5. MODIS 
underestimated GPP in the middle of the growing season (from June to 
August), and overestimated GPP in the early growing season (from 
March to May). Except for the years 2005 and 2013, MODIS under
estimated GPP in the senescence season (September). When compared 
with the observed values, the estimation values of Model-133 and 
Model-137 in the middle of the growing season (from June to August) 
are closer to the observed values than the MODIS estimated values. 
These two new models also show a few deviations in other months, but 
the overall loss is smaller than that of MODIS GPP. 

MODIS GPP is beneficial for large-area estimation (Huang et al., 

2015a, 2015b). Thus, if we can use MODIS GPP, which is spatially 
available for a large region to train our models, we can provide a wider 
and more accurate GPP estimation at regional scales (Goetz et al., 1999; 
Xiao et al., 2010). 

4.3. Future studies 

This paper proposes a new model for quantifying GPP, which has 
better performance than the initial model and many existing methods. 
However, there are still many imperfections. Therefore, in the future 
study, the following four aspects can be carried out. 

Find a more suitable basis function. In this study, 10 other basis 
functions are constructed on the basis of the initial model to establish the 
basis-function set, and two models (Model-133 and Model-137) with 
better performance than the initial model are obtained. However, 
whether they are the best and whether there are more suitable basis 
functions to construct the model with better performance still need to be 
further explored. In addition, we only use the parametric model in this 
paper, and it takes a lot of time for parameter training and selection. In 
the future, we will consider applying non-parametric probabilistic 
models to construct basis functions more flexibly (Martino and Read, 
2021; Silverman, 1985; Svendsen et al., 2018; Tipping, 2001). There
fore, it is still necessary to focus on the construction of a more suitable 
basis-function set for environment variables. 

Exploration of different types of GPP estimation models. The back
ground of this study is the GPP process model, and no exploration has 
been made for the EK model and the LUE model. This is mainly due to 
the different observation principles, leading to differences in the 
acquisition methods in each type of environmental variable. Therefore, 
in future studies, other environmental variable data or basis-functions of 
different types of GPP estimation models can be collected, and then 
based on the ideas of this paper, they can be further explored to obtain a 
more accurate estimation model, so as to further verify the extensibility 
of the method in this paper. 

Generalize to a wide range of GPP estimates. The advantage of this 
study is that, as long as flux data is available, the method presented in 
this study can be applied to any region to find the optimal model. 
Therefore, the method is not only applicable to the deciduous broad- 
leaved forest ecosystem of Harvard Forest, but also applicable to other 
global vegetation types, such as temperate steppe, polar tundra, 
temperate mixed forest, and tropical evergreen forest, etc. (McGuire 
et al., 1992). The aim of trying different vegetation types is that the 
optimal GPP quantification model may be different depending on the 
climate zone in which the vegetation type is located. Therefore, in the 
future, this method can be used to further explore the GPP quantitative 
models of various vegetation types in different climatic zones. 

Continuity measurement of GPP combined with empirical model and 
MODIS. The empirical model can only estimate the GPP in a small range 
using measured data with high accuracy; the MODIS GPP algorithm can 
perform continuous estimation in a large range, but its accuracy is 
relatively low. Therefore, the two methods can be combined for 
continuous GPP measurement to obtain an estimation method with 
wider range and higher accuracy, such as the study of J. Xiao et al. (Xiao 
et al., 2010). The eddy current observation is the most accurate and can 
be used as a benchmark to compare the accuracy of model and then 
effectively adjust the algorithm. However, eddy currents are not 
observed in all regions of the world. For example, China lacks open eddy 
flux towers. Therefore, in the future, research areas and data from other 
countries can be used to train continuous measurement models with 
strong generalization, and then migrate it for the estimation of China’s 
agricultural yield and forest wood biomass estimation. 

5. Conclusions 

Based on SCE-UA and Minimum Loss Screening Method, we pro
posed a new method to optimize the environment variable function for 

Table 7 
Other modeling studies related to the Harvard Forest flux data.  

Model or method Start 
year 

Stop 
year 

RMSE R2 Reference 

Model-133 2011 2014 
<25.50 g C 
m− 2 

month− 1 
>0.97  

Model-137 2011 2014 
<25.00 g C 
m− 2 

month− 1 
>0.97  

SAT-TEM 2002 2006 
45.62 g C 
m− 2 

month− 1 
0.90 

(Chen et al., 
2011) 

TEM 2002 2006 
58.63g C 
m− 2 

month− 1 
0.87 (Chen et al., 

2011) 

EK models plus LUE 
models 1991 2006 

80.35 g C 
m− 2 

month− 1  

(Schaefer 
et al., 2012) 

Fc and Fr comparison 
method cross-site 
optimization   

74.57 g C 
m− 2 

month− 1 
0.74 

(Yebra 
et al., 2015) 

Fc and Fr comparison 
method per-site 
optimization   

73.60 g C 
m− 2 

month− 1 
0.75 (Yebra 

et al., 2015) 

MOD_GPP 2003 2006 
71.55 g C 
m− 2 

month− 1 
0.88 

(Wu et al., 
2010) 

VPM 2003 2006 
22.44g C 
m− 2 

month− 1 
0.94 (Wu et al., 

2010) 

TGM 2003 2006 
22.60 g C 
m− 2 

month− 1 
0.92 (Wu et al., 

2010) 

VIM 2003 2006 
22.58 g C 
m− 2 

month− 1 
0.90 

(Wu et al., 
2010)  

Fig. 5. GPP comparisons between the MODIS satellite products (Terra and 
Aqua), Model-133 and Model-137 with the observations of EMS Eddy flux from 
2004 to 2014 (units:g C m− 2 month− 1). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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GPP model. Firstly, a wide range of candidates were built by establishing 
basis-function sets. Then SCE-UA algorithm and the Minimum Loss 
Screening Method were used to find the optimal model from a large 
number of candidates. A cross-validation method was used to test the 
performance of models selected. We identified two optimum models out 
of 144 candidates, providing more accurate GPP estimates than the 
initial model. These two optimal models show that (1) the photosyn
thetically active radiation function in the initial model can be replaced 
with a Sigmoid-like function, (2) the temperature function can be 
replaced with a Q10 equation, and (3) the carbon dioxide equation can 
use either the semi-saturation equation in the initial model or a Sigmoid- 
like function. The GPP estimation was more accurate by our new model 
than other models, validated by the GPP data of Harvard Forest. Our 
approach was tested efficient, robust, and can be extended to the opti
mization of other terrestrial ecosystem models. 
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